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INTRODUCTION

This report studies microwave backscattering from a for-
est canopy. The canopy is modeled by lossy dielectric discs
having rancdom orientation. Explicit expressions are derived
for the horizontal, vertical and cross polarized backscatter-
ing coefficients. The results are then compared with experi-

ment.

This work was motivated by the need to relate radar re-
turn to the characteristics of the scattering objects. The
situation is particularly complex in the case of vegetated
terrain which consists of an ensemble of many highly irregu-
lar objects placed in a more or less random fashion. Using
the scattered return from a vegetated terrain one would like
to obtain such information as height, density, average leaf
and branch orientation so that the vegetation can be classi-
fied. This type of information is important for military
analysis of the terrain. In éddition, if he terrain has
been deterrmined adequately from an electromagnetic point of
view, the backscatter information can be used to predict ra-
dar returns at other angles and frequencies not measured.
This would be of great aid to the development of manageable
data bases for radar simulations.

The above applications have served as a motivation for
the development of electromagnetic models for the vegetated
terrain. These models have been constructed by replacing the
vegetated region with a random medium whose statistical char-
acteristics are related to the physical guantities of the

medium. The models can be divided into two categories:
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continuous and discrete. In the continuous case, the vegeta-
tion is modeled by assuming that its permittivity e(x) is a
random process whose moments are known. The average back-
scattering cross section is then calculated from a knowledge
of the statistics of e(x). Usually it is only the mean and
correlation of the permittivity that are required. The anal-
ysis of the problem proceeds by first calculating the mean
wave in the random medium [Keller, 1962] and [Tatarskii and
Gertsenshtein, 1963]. The mean wave allows the characteriza-
tion of the vegetation by an equivalent dielectric constant.
The scattered field is then calculated by using single scat-
tering theory in this equivalent medium -~ a technique employ-

ed by Rosenbaum and Bowles [1974]. Particular applicaiton of

the method to vegetated medium has been made by Lang [1974], Hevenor

[1976], Fung and Fung [1977], Fung and Ulaby [1978], Fung [1979], and
Zuniga, et al, [1979). The theory is scalar in origin and
thus does not provide cross polarization information. In ad-
dition, a correlation function for medium fluctuations must
be assumed. As yet the detailed structure of this correla-
tion function has not been related to medium properties.

In this report, we have adopted the alternative approach
- modeling by discrete random media techniques. Here, the
individual objects - such as leaves - are characterized by
their scattering cross sections or dipole moments. Each ob-
ject is then given a random placement and orientation. The
analysis proceeds in a similar manner to the analysis of the
continuous case. First the mean wave in the medium is found

by using techniques developed by Foldy [1945), ©Lax [1951],




Twersky [1962], and Keller {1964].

Ther an equivalent die-

lectric tensor is found and the backscattering is computed by
using single scattering in the eguivalent mediwn. In appli-
cations for vegetation modeling, the method has been used
previously by Lang and Sokolakis [1979] for spherical scatterers. We now
extend the method to arbitrary shaped scatterers. Now we
find that the equivalent medium is anisotropic in nature.
This leads to zeroth order depolarization of the incident

wave. In addition, the backscattering coefficients are ex-~

plicitly related to scatterer volume and dielectric constant.

Previous work using discrete scatterers to model vegeta-

tion has been done by Du and Peake [1969], but they employed

single scattering (Born approximation! without introducing an
equivalent hedium. Thus they did not take into account the
decay of the incident wave in the vegetation. This limits
their theory to much lower frequencies and thin layers of

vegetation.
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PROBLEM FORMULATION

Consider the problem of scattering of time harmonic
electromagnetic waves from N discrete scatterers located in
a volume V as is shown in Figure 1. The particles are all
1 identical and each has volume VP' relative dielectric constant

} € and free space permeability M It is assumed that the

0

background medium is free space having permittivity €g and

permeability uo.

The position of the ith particle is specified by the
vector éi extending from an origin 0 to the center of that
particle. The particle's center is located by the center of

the smallest circumscribed sphere in which the particle can

be placed. Although the particles are identical they have a

i f} rotation with respect tc a fixed direction. The rotation for

" the i*" particle is specified by 2,=(8,, 9,

) where Oi and @i

[
-

are polar and azimuth angles respectively with 0<6,<m and
O:@iiZH.

The electric field obeys the vector wave egquation

2
VXVXE - kje (x)

1

= iwuo J (1)

. ) - -ilwt
where a time dependence e * haes been assumed. In (1) k, =

m/eouo is the free space wavenumber and J 1s the current

density of the source. The relative dielectric constant
er(g) can be expressed in terms of individual particles by
employing translations and rotaticns cf the particle located

at the origin. Let us assume that a particle located at the

origin 1s characterized by the function U(Xx) where

e m-.n...S.-...--;---------n-u--n
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Figure 1

Distribution of particles within volume V
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(1, xeV
U(x) = P (2)
o,
xin
Using (2) we express Er(g) as
N .
e (x) =1+ 4 iil Ulx-X,.2,) A= e -1 (3)
where
U(x,0) = U(R(Q) -x) (4)

Here U(x,{) is the function U(x) rotated by & and R'Q) 1is a
rotation dyadic.
We will find it convenient to express (1) and (3) in a

more abstract notation. We have
N
(L~ ¥ V,J'E=g (5)

where

L = UxUxI - kg; (€)

_ .2

)L, g = iwnyd (7)

Here I is the unit dyadic and g can be viewed as a normaliz-
ed source term. At times it will be convenient to wrice
= B
E (x) Ep(x) + E_(x) (8)
where go(x) is the solution to (5) when no scatterers are
present, i.e.,

L'Ey(x) = g C(9)

and E_(x) is the scattered field from the particles.
Z2g'2
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SINGLE SCATTERER - TRANSITION OPERATOR

Before considering the N particle scattering problem, we
will consider scattering from one particle located at the

origin. Putting N=1 in (5) with X,=0 and &,=0, we have

= AkZU(x, 2 (10)

et
|

V)'e =g

HES

where

= e, +
2. -0 Ss 4

n

! (11)

and & i outgoing as [x|+w. We have used the small e nota-
tion for the field here to remind us that there is only cne
scatterer present.

If we use (1l1) in (10), we cbtain

L-e_ = V-e (12)

- S = -

From {l1l2) we see that the term on the left, Vee, can be view-

ed as the source of the scattered field. We write

= Ve (13)

g <
_.Pq == e
where 2eq is an equivalent‘source term. Eince Y=0 when

§¢Vp, the sources, ﬂeq’ exist inside the particle boundaries.

It is more natural to think of the equivalent sources as
being caused by the incident field e5- Because Maxwell's

equations are linear, we can write

= T-e . (14)

geq =0

where the dyadic operator z‘is known as the transition opera-
tor in the scattering literature [Lax, 1951]. Now using (13

and (14) in (12) and multiplying through by g-l, we have




= ;,-l.I.e (15)

Thus the knowledge of I completely characterizes the scatter-
ing properties of the particle. The operﬁtor T is related to-
the dyadic scattering amplitude of the particle and for dipole
scatterers T can be determined from the polarizability of the

particle. Thus T is directly connected with guantities of

physical interest.
The transition operator is a linear bounded operator and,
as a result, can be expressed in integral form:
Gog(X) = L-gy = '/zigt_';(gg.ﬁ')- eq(x") (16)
where the limits for the integral extend over all space. One
can show that t is 0 when x and x' are outside the particle

[Frisch, 1968], i.e.,

et

(x,x') = 0, x¢v_ or §'¢Vp (17)

The property follows directly from the fact that the equiva-
lent sources for the scattered field are located within the
particle boundaries.

We will now represent { in terms of plane waves. The
representation of £ can be directly related to the dyadic
scattering amplitude. We proceed by representing 30(5) Sy
its Fourier transform, putting this in (16) and taking the
Fourier transform of (16). We obtain

oo =f axBlexn B (B
where

“i(k-x-k'-'a")

(19)

ficr

(k.k') = l~§ _/dxdx';(x,x')e
)

(2m>~ < - - - 7=

In (18) we have used the notation that h is the Fourier

R TR TRUT AR NU PR SO TR KA ) YRS R r s 3
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transform of ., More specifically

-~

hik) = jdic_ h(x)e XX (20)

Inverting (19) the transition kernel t can be expressed in

[Hag]

1?“;]ﬁ3 terms of its plane wave representation

et
it

- B (xx7) = =i fax ak' £k ket EEETLD (g
k- o (2m) "

The dyadic scattering amplitude will now be defined.
Consider a plane wave incident upon a scatterer lccated at
thé origin. An arbitrary plane wave can be decomposed into
TWO mutually.orthogonal lin=arly polarized plane waves. The
polarization directions are taken as ¢° and 8° where a® and
B° are orthogonal unit vectors with a° and B° being perpen-
dicular to the direction of propagation. The two incident
}"fli waves are

. g (X,1iiq) = g°e ' e la, 8} (22)

where i is a unit vector in the direction cf incidence. It
is more convenient to consider both polarizations simultan-
eously so we introduce the dyadic incident wave [Twersky, 1967]

B eolx/i) = eg(x,ira)a, + ey(x,1:8)8, (23)

]

(24)

BT _ = (I - ii)e (25)

pazor- P TR e

‘5 The dyadic scattered field from the particle iz given by

o

(x,1) = e (x,i:0)a, + e (x,1:8)8, (26)

5 S

where gs(ﬁ,g;q) is the scatteread field dve to polarization q.
The dyadic scattering amplitude, £, 1s defined in terms of the

asymptotic expressicn for e_ in the radiation zone. We have
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iz L) v EQE) Sgr— o Jxle (27)

where 0 is a unit vector in the x directicn, 0=x/|x

The relationship between £ and t can be found by employ-
ing (15) for large |x| (Appendix A). The result is

21-0 0t

ekl

£(0,i) = 2m (kg0 kod) * (I-1 &)  (28)

From this relation, we see

" £=0, £i=0 (29)
Thus £ is a four component tensor - all combinations of two
incident polarizations and two scattered polarizations. We
also note that f does not completely determine g but only

partially specifies it. 1In particular, a knowledge of £ for

a free space wave number k, only determines tik,k') at |k| =

‘E'|=ko7 also only four of the nine components of t in the

o polarization directions are determined.
ST Before concluding this section, transition operators for

particles not located at the origin will be needed. As before,
(1)
eq
be related to the incident rfield. It follows that

>. xv} the equivalent sources g for a particle located at §i can

o I : C s
8 9eq (x) = I,°e4 = fgi(z.gc_') ey (x')dx (30)

'] By shifting the sources and the incident field to the origin

gi can be related to L. One finds

to(z,x") = g(x-X,,x"-X;) . (31)

R Note that throughout the discussion the dependence of t on

e rotations has been suppressed for convenience of notation.

10
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COHERENT FIELD

In this section we will develop an approximate equation
for the coherent field by employing the Foldy approximation
[Foldy, 1945]. The equation is in terms of the transition
operator and thus, when the scattering amplitude is known,
the equation is completely specified. After the equation has
been derived it is pointed out that outside V the coherent
fields obeys Maxwells' equations with free space permittivity

and permeability. 1Inside V, the coherent fields obey Maxwells

equations with free space permeability and a macroscopic per-
mittivity that is inhomogeneous, anisotropic and spatially

dispersive.

Before discussing the coherent field, the statistics
that govern the particles position and rotation must be specified. It
. f will be assumed that the position vectors X, i=l...N and ro-
tation vectors Qi’ i=1l..N are random variables that are spe-
cified by a 5N dimensional distribution function. In addi-
tion, it is assumed that interchanging particles leaves the
distribution function unaffected. From this general distri-

bution function we can obtain the probability density func-

tion for the ith particle. It is
. Py . (X/w) = pyq(x,uw) i=l....N (32)
. a4%4 ot
"-.'f where w=(6,¢). In (32) we have explicitly noted the fact

that the particles ave identically distributed by omitting
the index i on the left hand side of (32). We will assume
that the particles location and rctation are independent, thus

Pyo (X, w) = p&(x)pg(g) (33)
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with the usual property:

J/. Py(x)dx = 1 Polutcu =1 (34)
v = 47 =

The particle density is defined by

p(x) = N p(x) (35)

jf p(x)dx
\%

In addition to the one particle density - when treating the

Px

so that

N . (36)

correlation of the field - the two particle density will be
required. We have

g (BXwuw =P
_j

P

ES)

X X,
=1

o

th and jth particles are

In (37) we have assumed that the i
independent. The independence assumption is valid when the
particles are sparsely distributed; the case we intend to
treat.

We will now develop the approximate eguation for the

coherent field. We start by noting that the total field E

can be thought of as a sum of the incident field Eg Plus a

sum of the fields scattered from each particle, Eél). We
have
E-g + 1 gt (38)
= =9 ) =
i=]1

The total field incident on the ith particle is called the

(i). E(i) repre-

effective field and is denoted by E Thus

I..
2]
sents the equivalent sources generated by the incident field

in the ith particle and
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E =r IE (29)
Using (39) in (38), we have
N .
E=Ej+ I L7t g () (40)
- — . = =1 =
i=1
This is the equation that we wished to obtain.
Now we average this equation. The result is
N (1)
<E> = EO + £ L T'<T.-E > (41)
— —— R = _l ——
i=1
To obtain an approximate equation for the mean we follow
[Foldy, 1945] and assume
gt = <p> (42)

This means that the random guantity E(l) is to first order

equal to a deterministic quantity, i.e., to first order it

is a ergodic gquantity. Using (42) in (41l) and noting that

(1)

<

it

i-g >ﬁ<gi'<§>>=<gi>-<§> we have the approximate equation

for the mean field

1

g' "<T;> <E> (43)

A
o)
v
it
td
+
e

i=1
Denoting explicitly the dependence of gi upon 51 and Qi' av-

eraging and then using (33), we have

#

<£i> (‘E(X'IQ-

-l -1

(s,w) (45)

T(s) = dw Py (w)

3

the bar over T has been used to indicate an average of
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angular varies only. By putting (44) in (43), by noting that
the cattered terms are identical and by introducing p(s) via

(3%), we obtain

<E» = F_ + f ds p(s)é-l-ﬁ(s)-<3> (46)
L =0 _— 5/ 2 =3 = g

Multiplying from the left by L and using (9), we get

§a<§>= g (47)

where

=1 - f ds o(s)T(s) (48)
\Y

This is the egquation for the coherent field.

The arguments that have led to the approximate equation
(47) have been largely heuristic. The essential approximation
1s contained in (42) where the effective field is assumed’
approximately egqual to the average field. Although we will
not discuss the conditions under which (42) is valid, it will
he shown elsewhere that the approximation is valid when the
fraction of volume occupied by the particles is small com-
pared to the total volume, i.e., vafv<<l. We shall refer to
a distribution of scatterers satisfying this condition as a
sparse ﬁistribution.

Before proceeding we will write the equation for the mean

in more concrete form. Using (30) and (31) in (47) and (48),

we obtain

L-<E(x)> - f ds [dx' p(s)E(x-s,Xx'-5) "<E(x')> =g (49)




t

Here the kernel (.,g';g) is the same as given in (31), how-

)
(1

ever we have explicitly shown its dependence on the angular

coordinate w.

We can now use (49) to obtain a macroscopic form of
Maxwell's equations. First averaging the Faradary's iaw
eguation; we have

e | Vx<E(x)> = 1wug<H(x)> . (51)

Then by using (51) in (49), we obtain the macroscopic Ampere's
law equation.
._i;: ' Vx<H(x)> = J =~ iw<D> , <D> = gog-<§> (52)

when € is a macroscopic permittivity operator which describes

the average behavior of the medium and Q=g/(iwu0). It is
€ = I+ 5-7 _/dg;_ ./d‘}g' p(s)t(x-s,x"'~s) . (53)
. k v
. ¥ 0
é‘. ol
N This expression simplifies to I (free space) when x¢V. To

see this we note that when xgV, we have §~§¢Vp since seVv.
Now using (17) we have £=0. When xcV (47) does not simply
in general. It describes an anisotropic, inhomogenedus, spa-
tially dispersion medium.

Let us examine how (53) reduces to some more familiar
expressions in some special situations. We will assume that

V is infinite through the remainder of this section. First

we will consider the case when the density is constant, i.e.,
p(s)=o0. In this case the permittivity is translationally in-
variant or homogeneous. To see this we substitute (21) 1into
(53) and we perform the integrations over s and k'. We ob-

i j tain

v

1
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-
.i]
| =1+ far fa e EE Fiop (54)
=1t k £
0
when T (k,k)= Jf AW P )E (k' W) (55)
4T -

Since the integrand is a function of x-x' the permittivity is
translationally invariant however it is still anisotropic and

spatially dispersive.

Another special case of interest is when.g is scalar,
i.e. g(ﬁli') = E(ﬁ,g');. This occurs when the scatterers are
spherical. Then the permittivity is isotropic but inhomo-
geneous and spatially dispersive.

The last special case to be treated is when the wave-
length is large compared to the size of a scatterer. Here
the particle can be treated as an electric dipole. 1Its egui-
valent source distribution is given by

= iwugd_ = dwuy(-iwps (X)) (56)

Heq q
where p 1s the electric dipole nxment of the scatterer and ¢(x) is the
Dirac delta function. The dipole mament is related to the incident field € by
the polarizability tensor g [Jones, 1964]

P =€y a'€, (57)
Using (57) in (56) and comparing it with (14), we find

T = kg (x) (58)

ox

Now putting (59) in (19), we obtain

UL
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Thus we see in the dipole limit £ is independent of k and k'.
Since we have an expression for t in the low frequency
or dipole limit, the special form of g can be easily obtained.

Using (59) in (54, we find

(61)

|

g =1+ po(x
Thus in the low frequency case, the permittivity is no longer
spatially dispersive however it is still anisotropic and in-

homogeneous.

[ Yoo mp——




CORRELATION

In this section we will calculate the correlation of the
electric field. Rather than following procedures used to find
the coherent wave, the distorted Born approximation will be
employed. This is a single scattering approximaticn where
the scatterers are assumed to be embedded in the equivalent
medium which has been found in the previous section. The
method is useful when the fractional volume is sma;l (va/v<<1)
and the albedo of a single particle is small. The.later con-
dition implies that the energy absorbed by a particle must be
much larger than the energy scattered by it.

We start by considering a volume V of eguivalent medium
surrounded by free space. There are N particles embedded in
V as shown in Figure 1. The scattered field due to the ith
particle can be calculated by modifing (39). We assume that
the incident field on the particle is the mean field <E> and
that the free space operator L is replaced by the equivalent
medium operator X as given in /48). We have
Ny L Y _
E = [ E = I & "-T.°<E> . (62)
=1 ~° i=1 = =T

Before proceedinyg, we point out that our main interest
in finding the correlation of the field is to use it to cal-
culate the backscattering cross section. Since this cross
section is related to the correlation of the field fluctua-
tions, we now define

Ep = Eg - <Eg> <Eg> = 0 (63)

Now computing the correlation of the fluctuating field, we

obtain

[ YT,
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Ix >

) > (64)

t

[
ix >

“E.(X)EX(

) > = fg (§>E;( ) > - <§ (§)><E;

=

where z* is the conju. te of z. Putting (62) in (64) and no-

ting that a porticn »f <E_E*> cancels with <E _><E*> if we use
=s*s ~s =S

the fact that N>>1. We find

2 <Eg (WEX(x)> = [ pgwdf(yg}(é) > (69
| where
<§f(§)§§(x)>_ =ljg ds o(s) §(§,§)§*(é,§) (661 !
.f with |
4 §(§)§) - §'l‘g(§)»<§> (67)

kere we have separated the average into rotation and coordi-

f nate space averages, thus introducing the conditional expecta-

tion, <EfE§> , with respect to given u.
=f=£7 W

e To write (67) more explicitly, we introduce the dyadic

Green's function G(x,x') for the operator £. It satisfies

?

g-g(ﬁlﬁ') = ;>

~

+ G - outgoing as | X | >

where £ is given in (48). Now (67) becomes

€ (x,8) = ./;15'9(5:@ ' ﬁiz"_zﬁz.'-%f-'_s_) <E(x")> (69)

The expression simplifies greatly in the low frequency limit.

Assuming that t is given by (59) and using this in (69) gives

El(x,s) = kég(y_,y "g"<E(s)> (701

“. -
A N |
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BACKSCATTERING COEFFICIENTS FOR A HALF SPACE OF DIPOLES

To illustrate the application of the methods developed

in the previous sections, we will calculate the backscattering

coefficients from a half space of scatterers that are small
compared to wavelength. We will alsp assume that the density

of scatterers p is constant. The physical configuration is

shown in Figure 2. There, we have shown the direction of the
Aﬁ : incident wave and the polarization vectors h°® and v°® repre-
' senting horizontal and vertical polarizations respectively.
To compute the scattered field using the distorted Born
approximation, we must first calculate the mean field in the
half space containing the particles. In the low fregquency
approximation the mean wave is computed by replacing the par-
ticles with an egquivalent medium having relative permittivity
tensor g=I+p g and free space permeability Mg * The usual con-
tinuity conditions associated with macroscopic Maxwell's
equations are assumed to hold at the interface 2=0.

_ Before proceeding we would like to emphasize that the
scatterers are sparsely distributed or that the fractional
fr ~;Z, volume they occupy is small (va/v<<1) ~ a condition necessa-
sary for the validity of the mean equation. This restriction

is reflected in the equivalent permittivity tensor. Small

*E:‘gi fractional volume requires that ]paij[<<l where Eij are the
components of g. We can exhibit the dependence of this con-

dition on the fractional volume GENVP/V:pVp explicitly » in-

e

troducing a normalized polarizability tensor g as follows:




l
|
4
l

Figure 2 Incidence wave on half space of uniformily

distributed particles

21




where we can show that the components of a remain bounded as

Vp+0. Now the permittivity can be written as

(72)

im
]
i
+
O

I |

and thus we have a small parameter for ordering purposes.

Although we are able to carry out the calcualtion of the
mean wave for an arbitrary average polarizability tensor é,
it is convenient to partially specify the angular probability
density, pg(g) in order to make g diagonal. First we choose
a sphericaI coordinate system of mutually orthogonal unit
vectors r,, 8, and ¢,. The position of these vectors is com-
pletely determined by the spherical angles 6 and ¢ as shown
in Figure 3. Now we a2lign the principal axes of the scatter-
er along these unit vectors. Then we write

g = a, I°I°+ a,0°8° + a,0°¢° (73)

= = ) b

By using the usual transformation between spherical and car-
tesian ccordinates, {(73) kecomes

3 3
a= I I a (6,9)x9x2 (74)
T i=1 =1 5%y =3

wirere X=X, X,y and X,=2 and x”,v° and z° are cartesian unit

vectors. The relationship between thea, and &, ,ag,8, are givén in Appendi
13

Now assuming that the random variables Oi and @i are in-

dependent, we write

pole) = pe(97p¢(¢) (75)
Averaging (74), we have
3
z

-
=
a

i=1 j=

where

s Ak
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Figure 3 Principal axes of scatterer

o
R i it . w RN % *‘““"’ﬂﬁ‘ﬁ}“ﬁ“"&g‘mn i st b s

e
Y

g

s i g 2

oy

i e i et A 2



a

er J{ZW

= dae d¢ pel€)p,(9la, . (6,9) (77)
XX 0 0 ¢ Xikj

We will now assume that the particles are distributed

uniformily in the ¢ variable, i.e., p©(¢)=l/2ﬂ. We find

= = = 0wy o 0,0 250 8
3= A XX° A, yoy© + A,z (78)
where
- _ - - 1 . 2, 2
qun = ayy = 2[ar sin©0 + aBCOS 8 + a¢] (79)
3 = a_ cos®s + a. sin®s (80)
z2 r 8

Thus all off diagonal terms averaged to zero and two of the
on diagonal terms are equal. Using this in (72), we see that
the egquivalent dielectric is uniaxial.

The mean wave in the equivalent medium will now be fpund
for the case of particles uniformly distributed in the azimuth

coordinate ¢. The incident wave is given

Ey(x,q) = geelk X qe h,v} (81)
where
k=k +k,z° , (82)
to ZO
with
= i ° =
£t0 k051n805 , kzo kocoseo (8 3)

and the polarization vectors are

he = y° , v = ~cosf

° 4+ sin
v oX siné

05°~ (84)

The average electric field in the equivalent half space satis-
fies
[7(9xD) -~ k&(I+6&) 1-<E(x)> = 0 ,  z<0 (85)

Let us assume a plane wave solution of the form

§
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HX (86)

where « = <t + K23°. In order to match fields at the inter-

face, the transverse phase velocity of the incident and trans-

mitted waves must be the same, thus £t=5t=k sind

o .
0 05 . Putting

(66) in (85), we have

2 = ., -
Kx (K xA) + koé + 6k0=a A=0 (87)

Representing A in cartesian components (87) can be written as

-

2,2 . T . 9
Kz‘kosxx 0 kOSlneoKz Ax
2,2
0 Kk -k 0 A = 0 88
z OBYY y (88)
. , 2
k051n60<z 0 koszz Az
L J 3 J
where
8 =1+ 6a g = cos 8, + Sa B = c0528 + Sa
XX xx ! vy 0 vy ! zz 0 z2z

(89)
Since (88) is a homogeneous system, the determinant of coef-
ficients must be zero for a solution to exist. This condition

detzermines the allowable values of Ky We find

- (h) _ —
K, =ty = ikofgyy (90)
1/2
B B
e = oV o gy | XX 22 (91)
z -z — Olsin®e +8
0 "zz2

where the superscripts h and v have been used to designate the
propagaticon constants associated with horizontal and vertical
polarizations. For an incident wave that is not grazing, i.e.
eoyn/z, expressions (90) and (91) can be simplified using the

small & parameter. We have
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§a
<P s ko(coseo + 7;§§§—> + 6(8%) (92)
=70
a +c0526 (E ~a_ )
<V 2k deoss. + é( 22 U __ XX zz) + 0(52)(93)
z 0 0 2 coseO

We cannot calculate these propagation constants to higher ac-
curacies than 0(8) since the original mean egquation has cnly
been found to this accuracy. We note that since we are con-
sidering lossy particles, the K;q) are complex and thus the
mean wave will decay away from the interface.

Next we calculate the amplitude coefficients for the

mean wave of both polarizations. We have

ikyz  -ikyz B X
(e °+Fhe e A z<0
<_E_<_}_(_lh)> = h (94)
i5< ),2s
A e y° , z>0
and
ik,z  -ik z Hg X
(e "o+l e °)e ve z< 0
<E(x,v)> = (95)
(V)
(A x°+A z°) e’ 2 , 2>0

where we have introduced a reflected wave in the free space
medium at the specular angle. Now by using the fact that the
tangential <E> and <H> must be continuous at the interface,
the unknown reflection and transmission coefficients:can be
calculated. Since the major effect cf the eguivalent medium
is to produce exponential decay, we next expand the coeffi-
cient for small § and we keep only za2ro order terms. We find

that Fq=0(5) and thus it can be neglected. The transmitted

e R oM et
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mean fields are:

<E(x,q)> = g°e + 0(8) , z>0 (96)
ge {h, v}

Proceeding with our developemnt, we now relate the transverse

Fourier transform of the correlation to the backscattering

coefficients. This is done within the context of the distor-

ch' - ted Born approximation developed in the previous section. We
start by taking the transverse Fourier transfcrm with respect

to x and x of (65), (66) and (70). We have

s -~ (83

<Er(k ,2)ER(k, ,2)> = J/. dw pQ(w) E (k ,Q)E;(Et,z)>£ (97)

5 <§f(Et'z)§%(Et'z)>g =0 JC ds £(k,,z,s) -E" (ki r2/8) (98)
i,

Lo where

I = 2>

: E(k,,2z,8) = kgG(k,,2¢8) "2 <E(s)> (99)

Since we will only require G when x and s are in the equivalent
medium and since the reflection at the interface is small we
can replace G by the dyadic Green's function for an infinite

equivalent medium, i.e.,

Gix,5) = ') (x-5) + 0(6) (100)

We have written the infinite space Green's function in terms

of x-s since it is translationally invariant. We then have

~ -ik

() o) k s
g (}_(_tlzl_s_) G (kt'z s)e (101)

Now by putting (96), (99), (1oo)and (101)in (98), by integra-

ting over 3, and by setting z= z~0, we have

t
gf(gt,o)gg(&t.0)> = Sk, -qluw)s —k ¢ (102)

where
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. 4 ¥ () _ oy [ (@) *
okovm ds (G (kt' s) "a'g®) (G (ktr-s)
I 0 - - - -
-2Imméq)s
'2*'9°) .e (103)
Here §(§t,q]g) 1s the transverse dyadic spectral density at

the interface assuming w is fixed. The normalized polariza-
bility has been introduced by using (71).

By using the results of Appendix C and by noting that
§(k,,9[J) we obtain the backscattering coefficients

2 2
_ kocos 60

0'0
pq 4m

2°°g(-k. valw)'p® » p,qcth,v) (104)
0

To evaluate the integral of g in (103), we will need the

transformed Green's function. To cbtain it, we first write
oo )
the governing equation for g( . It is
2 - . (=) .
[(Vx(VxI) =~ ko(;+dg)] G (x) = ;6(§) , (105}
g(m)(i) - outgoing as |x|=w
Using
() _ 1 ik °x
G (x) = —=— Jdx glk)e™= = (106)
(27)
in (105%), we find
[(oxxxD) + k2 (I+6al-glk) = -1 (107)
Then
() 1 f ik *x
G (ft,Z) = 5% dKz gk)e = = (108)

-~

To simplify the remaining computation for g(m) we note from

)

(104) and (103) that g'”) will only be required for x,=-k =

o
-k051n80§ .

Inverting (107) and performing the integral in (197) by

the method of residues, we obtain




~ (o) sineamév)c(z>
G 4]5t0'z) = B,,X°X° + X, (x°2°+2°%°)
(K(V)Z-kzs ) 1KéV)|z| ixéh)]zl
-2 x 0" xx z°2° & &) + & h y°y°® (109)
X 2ic \V 2ic (B =
0 z z
where
1, z>0
og(z) = (110)
-1, z<0

and the g's are defined in (89). Approximating the coeffi-

cients to zeroth order in §, we have the simplified expression

b
i .
P
3
F-
7
5o
i
:

iKéV)lzl iméh)lzl
g (kg o2 = TS + RS (111)
" 0 1XCosY, X COSE
f: If we use this in (103), perform the integraticn and use
f; the result in (104), we have our final fcrm for the backscat-
ii tering coefficients. It is
] SkgV_|a 2
IR - P4 817(Imt<,p + Imx 4 )
: Z ¥4
,-“;::\ where
S
I |a |2 = f d_u_:lg“’g'g°[2 . (113)
R pq .
N and Kés), se th,v} are given in (92) and (93). The dependence
of lapq' on angle of incidence is worked out explicitly in

Appendix B for scatterers that are distributed unifcrmly in
the ¢ coordinate.

The final result given in (112) can be expressed in terms
of scattering cross sections of individual particles. Using

(28), (60) and (71), we have

~ - 2 SRRy | B S S —
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= p°-f-q° = 27;2 S = knga /4mn (114)

£
Pq P4 J 2

Now by recalling that the backscattering cross section from

a particle 0;2)=4ﬂ!f ]2, (L12) becomes

-2
g = , p,qe th,v} (115
pd ZImK(§)+ZImKTq)

Z z
Following Attema and Ulaby [1978] we can give a one dimen-

sional interpretation of (115). If we rewrite (115) as

(b) -ZImKéq)lzl —2ImKéP)|z|

0
c2_ = jf dz po e e 116
pa P%pq (116)

we can view the scattering as being decomposed into scattering
v n”? from slabs of width dz. An intensity of exp(-ZImK;q)|z|) is

] incident on the slab located at z. The incident intensity is

backscattered with reflectivity factor pc(b). The backscat-

pPg
zered wave then decays as exp(—2ImK£q)|z|) until it reaches

the interface.

.o
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DISCUSSION AND NUMERICAL EVALUATION

In this section, we will first discuss several general

properties of ¢° that are indeﬁendent of the particular scat~

joi°
terer chosen. Following this discussion, we use our method

to model a forest canopy by a collection of lossy dielectric
discs. The theoretical curves computed from this model are

then compared with some experimental data.

Because of the simple dependence of cgq on the medium

properties and incidence angle certain general observations

can be made that are independent of the particular nature of

the scatterer. First, we note that Ggq as given by (115) is

independent of the density of scatterers p. This follows di-

rectly from (92) and (93) where we see that the Imxés), se th,v}
are directly proportional to p. Thus the linear p dependence
in the numerator of (115) is cancelled out bv the dencminator.

Second, we note that Oah‘ cosﬁo. This is the same result as

predicted by the scalar theory. Finally, we note that c;wfogv

i at normal incidence (8°=0). This is an expected result. Since

the scatterers are uniformly distripouted in ¢, the two polari-
zations see the same medium at normal incidence.

We now proceed to model a forest canopy by a collection

N s g s o,

of leaves. The leaves are in turn assumed to be lossy dielec-
tric discs as mentioned previousliy. The discs have radius a
and thicknegss h. Typical dimensions are radii of one &o-seV*
eral centimeters and thicknesses of tenths of a millimeter.
The electrical properties of discs can be characterized by
their normalized polarizability tensor a when the wavelength

is large compared to the disc. From Jones [1564] and

P
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van de Hulst [1957] the polarizability of a disc along its

principal axes is given by
— a, =a, =4 |, A= e -1 (117)

when r,0,¢ are defined in Figure 3.
Because of the large volume of water present in vegeta-
tion, we can usually assume [sr|>>l in the microwave region.

Using this assumption in (117), we find that }ae]=la¢[>>|ar

This inequality can now be used to simplify the scattering

0
Paq

Thus it follows that the magnitude of the backscattering cross

cross section of (115). We find that o x|erlzvp/lms .

hof
sections are directly related to the volume and complex die-
lectric constant cf the discs in a simple manner. Therefocre,

as leaves grow and as their moisture content changes these
effects should be observable by measuring o;q at different
periods of the growing season.

Before computing the backscattering cross sections as a
function of incidence angle, we will require the relative di-
electric constant of the leaves and the anocular distribution
of leaves. Farst the relative dielectric constant is considered
Our calculation fcllows that of Fung and Ulaby [1978] who in turn have
based his results upon de Loor [1968] and Carlson [1967].

They mcdel the leaves as a mixture of water and solid materi-
als. For illustrative purposes we have chosen 50% water and

S0% solid for cur calculations. By using (3) and (4) of

Fung and Ulaby [1978] at a frequency of 1.1 GHz we find that €=
30.8+11.8. Qur choice ©f frequency has been motivated by experimen-

tal results that appear in the literature. We have chosen to
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compare »ur results with those of Bush, et al [1976] who has
measured c;q, p,ge {h,v} from forests for frequencies 1-18 GHz.
Because of the dipole approximation made in our model, only
the lowest frequency (l.1GHz) Ulaby measured was used for
comparison purposes.

The angular distribution of lezaves will now be considered
Field measurements of leave orientations have been made by
Smith [1973] and others. It has been found that the leaves
are distributed uniformly in the ¢ coordinate (Figure 2). The
distribution of leaves with respect to 0 is more vegetation
type dependent. Several are given Ly Smith [1977]. Since
no measurements of this type exist for the Ulaby dzta, we

have assumed that ¢ is uniformly distributed. For © we have

considered the following two density functions:

1
{ﬁ—— , 0<8<a8

Pglb) = 4 (118)
0 R Aeﬂ,ivgﬁ
or
i T=AQ, <B<T+AD
2AeJ, ! .- 4 T — l
P@(G) = {110q)
0 ’ elsewhere .
In (118) when Ae” is small, the lecves are approximately
parallel to the interface (z=0); when Ae” =n/2, they are un-

iformly distributed in 6. 1In (119) when A8, is small, the

1

leaves are perpendicular tc the intevface; when A8, is w/2

1
they are uniformly distributed in ©.
The numerical calcualtions are presenved in Figures 4-9.

In these figures the backscattering coefficient is plotted as

a function c¢f the angle of incidence 80. In Figures 4-7 we

v
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have used the angular distribution given in (118) while in
Figures 7-9 we have used (119). Figure 7 corresponds to a
uniform distribution over all 6 and thus, for this case,

(118) and (119) give the same results. One should note that
since ]er[>>l, a change in £, Vp or e_ just shifts the level
of the curves but it does not change their shape. Their shape
only depends on pe(@).

The following trends are observed in Figures 4-7: First,
Oﬁh is always greater than o;v. Their difference increases
as Aq¢ becomes smaller. Second, the cross polarized back-
scatter becomes smaller as AB/ becomes smaller. In Figure
7-9, we observe that: First, U;v becomes greater than cﬁh as
Ael is decreased; second, the curve for Uﬁv tends to flatten
out as Ae‘L is increased; and third, the difference ohhnohv at
60=O becomes smaller as Ael increases.

A comparison of our theory with the experimental results
of Bush, et.al [1976] is made in Figure 10. There, we have
plotted our Figure 8 along with his data for Kansas deciduous
trees measured in the spriﬁgtime at a frequency of 1.1 GHz.

Figure 8 was chosen since it most clearly appears to follow

the trends of the data i.e., flat cross polarization and c;v>

oﬁh‘

Although our theory follows the trends of the data, it
is clear from the results that additions to our model should
be made. The fact that °;v>°ﬁh is most likely due to the
vertically oriented tree branches other than due to the leaves
that tend to be parallel to the interface. In addition, an

examination of the numerical results shows that the skin depth
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for the mean wave is large. Thus at a frequency of 1 GHz the

underlying ground should be taken into account.
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CONCLUSIONS AND RECOMMENDATIONS

We have developed and analyzed a discrete scattering
model for vegetation. The model replaces the vegetation by
simple scattering objects such as discs, spheres or rods so
that leaves, branches and trunks can be modeled. The objects
are given random placement and orientation in order that the
complicated features of the individual scattering objects are
averaged cut and simple expressions are developed for the
backscattering coefficients. The model directly relates the
backscattering coefficients to easily measured medium param-
eters such as leaf size, density and moisture content. The
theory as presented also takes into account depolarization
effects that agree with experimental data.

At present only the leaves in the forest have been in-
cluded in this model and no effects of the ground have been
taken into account. We recommend: first, that the effect
of the ground be iacluded. If this is done agricultural crops
can be modeled. Second, the numerical calculaﬁions indicated
the branches in forests will make an important contribution
of microwave frequencies. They can be modeled by dielectric
cylinders and averaged over position.

Finally we feel that the inverse problems related to the

above approach should be investigated. Questions such as:

Can the probability density function of leaf inclination angles

be determined from backscatter data? Once the distribution
of incliratior. angles is known, forest or crop identification

will be much easier.
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APPENDIX A

Relationship Between the Transition Operator and the Scatter-

ing Amplitude

-~

To find the relationship between f and &, we start with
(15). Using (23) and (26), we can write (15) in terms of

dyadic incident and scattered wave

- -l. .
= L I-g, (1a)

o
ne
o

s
Next we use (16) in (1lA) along with the free space dyadic

Green's function [ for g-l. We have

¢ (%,1) =ﬁ§'g(§,§')'ﬁ§" £(x',x") gy (x" 1) (22)

i

Here the free space dyadic Green's function is given by
ik . |

A )e 0

K 2 drx-x"']

-0

To obtain 8¢ in the radiation zone, the far field expression

x-x"|
(32)

([l

(x,x") = (I+

for [ will be required. It is [Twersky, 1967]

_ikoo,xl iko‘él

£~ (1-00)e T lxlee an

Ix

Now putting (4A) and (25) in (2a)

o

o
ir
[
I

o
I

ikylx| '
I-E0) S (5A)
Finally employing (19) in (5A), and comparing with (27) we

obtain the required result
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APPENDIX B ~ Polarizability Statistics

In this appendix calculate the mean square polarization
statistics used in (112). The calcualtion will be performed
with the assumption that the scatterers are uniformly distri-
buted in 9o.

First we derive the components of the polarizability
tensor in cartesian coordinates in terms of the princip=2l axis
components. The unit vectors r°, 5° and $° are related to x°,

y° and z° as follows:

r° = sinfcos¢x® + sinbsingy® + cos6z°
8° = cosbcos¢x® + cosbsingy® - sinfz® (1B)
$° = -singx® + coso¢y®

Using this in (73), the cartesian components of (74) are:

= (2 ain 2 2 .2
.y = (ar51n 8 + a,cos 8)cos“ o + a¢51n d
ayy = (arsinze + aecosze)sin2¢ +a¢cosz¢
_ 26 . . 2e
a,, = a.cos” h agsin
(2B,
_ .2 2 .
axy = [(ar51n 8 + aecos 8) a¢]cos¢51n¢
ag ., = (ar—ae)51n6cosecos¢
ayz = (ar—ae)51n6c05851n¢
The other components are gotton from the fact that a is a

symmetric dyadic.
Ncw we will obtain the components of a in the polariza-

tion directions in terms of the cartesian components. We

have using (84)
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a = R a+hY = a

hh - U mn y'}'
a, = htea'v® = -coszf.a + si

hy 23tV ceEfya g s negayz

-] hh ( EB)

& = y®+.a*h® = a,

vh - = = v
a = yoea+y° = cosze a - 2cus6.sing.a + sinze a

AT _ = e 0 xx 0 0 x=z R ¢ I 4+

Following this, the mean square polarizabilities aie com-
puted. When we assume a6=a¢Eat and we uge the approximation

that a,>-a ., the mean square polarizabilities become

S

{

'ahhiz = Iat|2[3 sin“8/8 + cos?8]

. 2 o 2 2 2Tmintn 2 f o 2 2pgin?

I“hvl = lavh' |atl [sin"6cos®8,/8 + sin®fcos®@sin?e,/2]
2 2 . .; 4 [N N 4 s 4 4

la__ | !atl [3-5in"8/8 + cos®8lcos'8, + sin"8sin’e,

+ [2sin?Bcos?6 - sin“e + 25inze]sinzeocosze0
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APPENDIX C - Relationshiv Fetwvesr the Backscattering
Coefficients and the Transverse 3pectral Density

We start by considering the fluctuating portion ol the
scattered field, E

=F!

This £ield can be viewed at arisinyg from scources on the in-

as defined in (82} in the ragion z>0.

terface. Sc¢ chat far field cuantit/=s can pe found, we ini-

t1ally consider that portion of E_. that arises fiom sources

£
contained within a finite region A ca the interface. The ra-
diated field from the region A will be denoted by E, (x,q) .

A
The field E. (X,q) can be related to the interface fluc-

‘A_
tuations by employing a plane wave expansion in the region

z<0. We have
-ik_z+ik, (x, -x/)
E. (x,q) = ——--~l—-§-J dk, [ dx_ 2:(0,%l.q9)e 2 SRR Y e
(2m) A (16)

k, = /Ré"llitlz ,  Imk_>0
where E.(0,%X ,q) is the fluctuating field un the interface
due to an incident wave of polarization g. The Kt integral
in (1) can be asymptotically evaluated for large !x| [Collin

and %Zucker. 1969] . We find

{ IS |
+ik cose, +ik |x| lEto B¢
~ ' ' N
EfA‘._}_(_,Q) v —-mr— e '/}; dzc_t Ef(o ,_)EtIQ)ﬁ (2C)

where x has been specialized to the backscatter directicn 80
and &t is given by (83).
0 .
The backscattering ccefficients ere now defined. They

are

4Tr]_:5|215(p,GI)
AIi(q)

o = lim lim

I —rw { % I O

g,peth,v: £4C)

- Yoo




where Ii(q) ig the incidert intensity per uanit area w:th po-
larization g, I:(p,q) is the average intensity at the obser-

vaticn point with polarization p due to an incident wave with

polarization 4. In view of (8.), I,(q)=1. We also have

I {p,a) =<l E. (x,9 p°]% (4C)

We can complete the development by first representing

~

the field on the interface by its Fourier transform, gf(ht,q):

E

~ ik, -x
] -t =t '
Jfgf(kt,q)e dk (5C)

_ 1
f(on::_th) - +

(27) 2

Now by using (2C), (4C) and (5C) in (3C), we have

2

kocos 80 J[ | ~
o2 = lim lim dk! dk"./. dx'dx'< p° E-(k'!.q)
P e |x|+e 245, —t =t =t =t £f'=t

[ S PR | R . !
ifkf-xi-k{ xt+5to (xg=-x] (6)

Ef (kgya) pe| e
Next we introduce the transverse dyadic spectral density

s(k,+q)whica is given by

<Bg(ky, DE(kE,Q)> = S(kg,q) 8 (k) -k) (7C)

Note that this defiaition requires that the process E (kt.u)
be homcgeneous or stationary in k.
By using (7C) Zi (6C) and carrying out the integrations,

we obtain

kgcoszeo
(% =& mee—— S {-k, , 8C
rq 473~ p\ L, gq) (8C)
wherae
s \&t,q) = B°°§(Et,q)'£° {9Q)
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